БЛОК ПРИЕМНО-КОНТРОЛЬНЫЙ ОХРАННО-ПОЖАРНЫЙ

ΦΡΕΓΑΤ-8Κ

Руководство по эксплуатации

ТРМВ.425513.001 РЭ

Оглавление

Опи	сание и работа	3
1.1.	Назначение	3
1.2.	Гехнические характеристики	4
1.2.1	. Технические характеристики блока сведены в таблице 1	4
1.3.	Состав изделия	6
1.4.	Устройство и работа	7
1.5.	Охранные (ОС)	8
1.6.	Пожарные (ПС)	9
1.7.	Гревожные (TC)	11
1.8.	Программируемые выходы	11
1.9.	Режимы индикации блока	11
1.10	. Режимы работы встроенного звукового оповещателя	14
2.	Подготовка блока к использованию	16
3.	Программирование параметров блока	16
10.	Установка на месте эксплуатации	22
11.	Эксплуатация блока	23
12.	Хранение	26
13.	Транспортирование	26
Пои	помение Л	27

Настоящее руководство по эксплуатации предназначено для правильного использования, транспортирования и технического обслуживания блока приемно-контрольного охранно-пожарного ППКОП Фрегат-8К ТРМВ.425513.001 РЭ.

Термины и сокращения:

- ППКОП прибор приемно-контрольный охранно-пожарный;
- Ключ ТМ электронный идентификатор Touch Memory;
- ПЦН пульт централизованного наблюдения;
- ШС шлейф сигнализации;
- СО световой оповещатель;
- 3О звуковой оповещатель;
- ПО программное обеспечение;

1. Описание и работа

1.1. Назначение

- 1.1.1. Блок приемно-контрольный охранно-пожарный ППКОП Фрегат-8К (далее блок) предназначен для охраны объектов, путем контроля состояния восьми шлейфов сигнализации (ШС), как в автономном режиме с включением устройств оповещения, так и с передачей тревожного извещения на пульт централизованного наблюдения (ПЦН).
- 1.1.2. Область применения централизованная охрана квартир, гаражей, дач, офисов, торговых помещений, складов и других объектов в составе комплекса охранно-пожарной сигнализации «Фрегат».
- 1.1.3. Блок является многоканальным, восстанавливаемым, многоразового действия, обслуживаемым, многофункциональным.
- 1.1.4. Блок рассчитан на круглосуточную работу при температуре окружающей среды от минус 10 до плюс 45 °C и относительной влажности воздуха до 90 % (при 25 °C).
- 1.1.5. Конструкция блока не предусматривает его эксплуатацию в условиях воздействия агрессивных сред и взрывоопасных помещениях.
- 1.1.6. Степень защиты оболочки блока IP20 по ГОСТ 14254-96.
- 1.1.7. Пример записи обозначения блока при заказе и в документации другой продукции: Блок приемно-контрольный охранно-пожарный ППКОП Фрегат-8К TPMB.425513.001 ТУ

1.2. Технические характеристики

1.2.1. Технические характеристики блока сведены в таблице 1.

Табл. 1. Технические характеристики.

Параметр	Значение	
Количество шлейфов сигнализации	8	
Каналы связи с пультом централизованного	GSM/GPRS	
наблюдения	Ethernet	
Способ идентификации пользователей	1 вход считывателя ключей	
· · · · · · · · · · · · · · · · · · ·	Touch memory	
	охранный	
Типы ШС	пожарный	
	тревожный	
Номинальное сопротивление оконечного резистора ШС, кОм	4.7	
Сопротивление проводов охранных и пожарных ШС без учёта выносного элемента, Ом, не более	100	
Сопротивление утечки между проводами ШС или каждым проводом и «землёй», кОм, не менее	20	
Суммарный ток потребления активных извещателей в дежурном режиме по одному ШС, мА, не более	1.5	
Время, при котором происходит фиксация нарушения ШС, мс, и более	500	
Время, при котором не происходит фиксация нарушения ШС, мс, и менее	300	
Количество силовых выходов	2	
Ток коммутации каждого силового выхода, А, не более	0,5	
Напряжение коммутации силовых выходов, B, не более	25	
Максимальный суммарный ток коммутации силовых выходов, подключенных к каждому выходу для питания внешних нагрузок «+12В» блока, А, не более	0,45	
Максимальное количество устанавливаемых SIM- карт	2	

Тип устанавливаемых SIM-карт	mini-SIM (стандартная)
Поддерживаемые протоколы	UDP, DHCP, DNS
Время технической готовности, с, не более	25
Скорость обмена по сети Ethernet, Мбит/сек	10
Информативность (количество информационных сообщений), не менее	32
Время доставки тревожных извещений по каналу Ethernet, c, не более	5
Поддержка установки статического IP-адреса блока	да
Конфигурирование по интерфейсу USB	да
Конфигурирование по каналу связи с ПЦН	да
Вход для подключения датчика отметки прибытия патруля	да
Максимальное количество поддерживаемых серверов ПЦН	4
Потребляемый ток средний при напряжении	Ethernet – 140
питания 12,5 В (без учёта внешних нагрузок), мА	GPRS - 150
Диапазон рабочих температур	От минус 10 до плюс 45 °C
Габаритные размеры, мм	170*115*45
Масса (с аккумулятором), кг, не более	110
Средняя наработка на отказ, ч, не менее;	40 000
Среднее время восстановления работоспособного состояния, ч, не более;	2
Средний срок службы, лет, не менее;	8
Вероятность возникновения отказа, приводящего к ложному срабатыванию, не более за 1000 ч работы	0,01

- 1.2.2. Режим работы блока непрерывный круглосуточный.
- 1.2.3. Блок осуществляет прием извещений о нарушении ШС, посредством контроля величины сопротивления ШС. В качестве извещателей, включаемых в ШС, могут использоваться охранные и пожарные извещатели электроконтактного и магнитоконтактного типов ("ИО101-2, "Фольга", "ИО102-1/1А", "ИО102-2", "ИО102-4", "ИО102-5", "ИО102-6", "ИП 103-7", "ИП 105-2-1" и подобные); с выходом контактами реле ("Аргус-2", "Аргус-3", "Арфа", "Сокол-2", "Сокол-3", "Сова-2", "Фотон-9", "Фотон-СК", "Фотон-6", "Эхо-А" и подобные); питающиеся по ШС ("ИП 212-3С", "ИП 212-5М", "ИП 212-44", "Окно-5", "Волна-5", "Фотон-8", или аналогичные по выходным параметрам).

1.2.4. Питание блока осуществляется внешнего резервного источника постоянного тока напряжением от 11,8 до 14,3В.

1.3. Состав изделия

- 1.3.1. Функционально блок состоит из следующих узлов:
 - коммуникатор связи с сервером системы передачи извещений (СПИ);
 - приемно-контрольный прибор с клавиатурой и считывателем ТМ;
 - шлейфы сигнализации (8 шт.);
- 1.3.2. Функциональная схема блока показана на рис. 1.

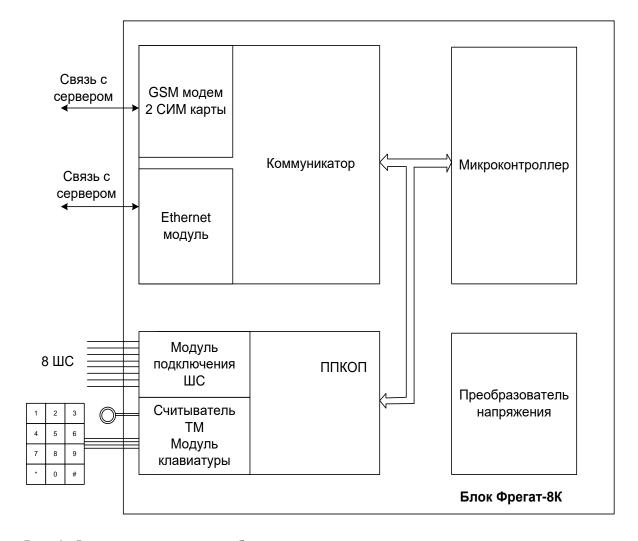


Рис. 1. Функциональная схема блока

- 1.3.3. Конструктивно электронная часть блока размещена на двух печатных платах:
 - Основная плата коммуникатора и ППКОП;
 - Плата индикации. На этой плате расположен микроконтроллер, считыватель ТМ и разъем для подключения клавиатуры. Плата крепится к верхней крышке прибора;
- 1.3.4. Состав комплекта поставки блока Фрегат-8К перечислен в табл. 2.

Табл. 2. Состав комплекта поставки.

Наименование документа	Количество (шт)
1. Блок охранно-пожарный, в комплекте	1
2. Ключ ТМ	1
3. Резистор – 4,7 кОм ± 5 % (выносной)	8
4. Вилка RJ-45	2
5. Паспорт	1 экз.

1.4. Устройство и работа

- 1.4.1. При работе блок устанавливает связь с ПЦН через сервер «Интернет драйвер» системы ОПС «Фрегат». IP-адреса и порты серверов прописываются в конфигурации блока.
- 1.4.2. «Интернет драйвер» это программный модуль установленный на ПК. Он должен быть доступен через сеть Интернет по статическому IP-адресу и порту. Вместо IP-адреса возможно использовать доменные имена (протокол DNS).
- 1.4.3. Для резервирования каналов связи в блок можно записать до 4 адресов серверов. При отсутствии связи с текущим «Интернет драйвером» блок переключается на резервный.
- 1.4.4. Схема работы блока с АРМ ПЦН изображена на рис. 1.

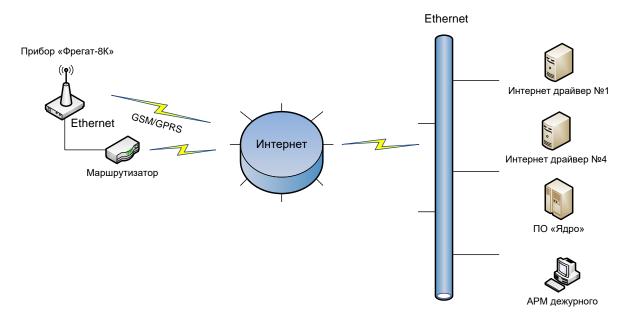


Рис. 1. Схема связи с АРМ ПЦН

- 1.4.5. Блок может использовать любое сочетание доступных ему каналов связи. Переключение каналов связи происходит по алгоритму использования приоритетов видов связи, указанных в конфигурации:
 - Ethernet или GPRS приоритет использования канала связи

- СИМ1 или СИМ2 приоритет использования СИМ карт
- Приоритет использования серверов Сервер1, Сервер2, Сервер3, Сервер4
- 1.4.6. В ШС блока могут быть включены:
 - выходы типа «сухой контакт» любых охранных извещателей;
 - выходные цепи блоков приёмно-контрольных охранно-пожарных;
 - извещатели пожарные тепловые;
 - извещатели пожарные оптико-электронные дымовые
- 1.4.7. Тип шлейфа сигнализации устанавливается при программировании параметров блока. Доступные типы ШС:
 - охранный;
 - тревожный;
 - пожарный дымовой;
 - пожарный тепловой;
 - пожарный комбинированный;

1.5. Охранные (ОС)

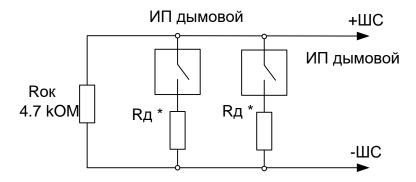

- 1.5.1. Состояние охранного шлейфа сигнализации контролируется только в состоянии «ВЗЯТ». После взятия ШС под охрану блок отслеживает ток в шлейфе в заданных пределах. При выходе величины тока из заданных пределов блок переводит ШС в состояние "ТРЕВОГА" и отправляет соответствующее извещение на сервер.
- 1.5.2. Снятие и взятие охранных шлейфов возможно с помощью ключа ТМ, клавиатуры блока или командой с Сервера.
- 1.5.3. Снятие командой с Сервера возможно только в том случае, если ШС находится в состоянии «ТРЕВОГА» или он выбран для снятия с помощью ключа ТМ или клавиатуры.
- 1.5.4. В блоке имеется возможность взятия отдельных шлейфов (частичное взятие).
- 1.5.5. Схема включения нормально-замкнутых и нормально-разомкнутых охранных извещателей представлена на рисунке 2.

Рис. 2 - Схема включения нормально-замкнутых и нормально-разомкнутых охранных извешателей.

1.6. **Пожарные (ПС)**

- 1.6.1. Пожарные ШС подразделяются на 3 вида:
 - комбинированный с переопросом "Комбинированный ШС"
 - с распознаванием одновременного срабатывания двух дымовых датчиков "Дымовой ШС";
 - с распознаванием одновременного срабатывания двух тепловых датчиков "Тепловой ШС".
- 1.6.2. В комбинированный ШС могут одновременно включаться дымовые и тепловые пожарные датчики.
- 1.6.3. Состояние пожарного шлейфа сигнализации контролируется постоянно. Нагрузочная способность пожарных ШС не менее 1,5мА.
- 1.6.4. При обнаружении обрыва или короткого замыкания шлейфа (сопротивление более 16 кОм или менее 400 Ом соответственно) блок фиксирует состояние "Неисправность пожарного шлейфа" и отправляет сообщение "Неисправность КЗ" или "Неисправность ОБРЫВ" в зависимости от нарушения.
- 1.6.5. При сопротивлении шлейфа в диапазонах 0,4 2кОм и 7 15кОм блок фиксирует срабатывание пожарных извещателей и переходит в состояние "Пожар".
- 1.6.6. После нарушения пожарного шлейфа (пожар или неисправность) блок каждые 4 минуты проверяет исправность шлейфа. Если сопротивление шлейфа вернется в состояние нормы, блок берет его под охрану и передает извещение "Восстановление пожарного ШС" на Сервер.
- 1.6.7. При срабатывании пожарного дымового датчика в комбинированном пожарном ШС, блок отправляет на сервер сообщение "Сработка пожарного датчика", берет шлейф на охрану со сбросом питания шлейфа сигнализации (ШС), при повторном срабатывании датчика в пределах установленного периода времени, отправляет сообщение "Пожар КЗ" и переводит ШС в состояние "Пожар".
- 1.6.8. При срабатывании пожарного датчика в дымовом или тепловом пожарном ШС, блок отправляет на сервер сообщение "Сработка пожарного датчика" и ждет срабатывания второго датчика в определенный период времени. Если в этот период произойдет срабатывание второго датчика, то блок отправляет сообщение "Пожар КЗ" и переводит состояние ШС в состояние "Пожар", иначе берет ШС под охрану.
- 1.6.9. Схема включения нормально-разомкнутых дымовых извещателей с распознаванием одновременного срабатывания двух дымовых датчиков представлена на рисунке 3.

- Рис.3 Схема включения нормально-разомкнутых дымовых извещателей с распознаванием одновременного срабатывания двух дымовых датчиков
 - 1.6.10. Схема включения нормально-замкнутых дымовых извещателей с распознаванием одновременного срабатывания двух тепловых датчиков представлена на рисунке 4.

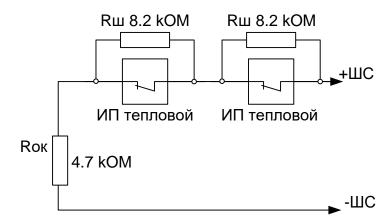


Рис.4 - Схема включения нормально-замкнутых тепловых извещателей с распознаванием одновременного срабатывания двух тепловых датчиков

1.6.11. Схема включения нормально-разомкнутых ("дымовых") и нормально-замкнутых пожарных извещателей (комбинированный ШС) представлена на рисунке 5.

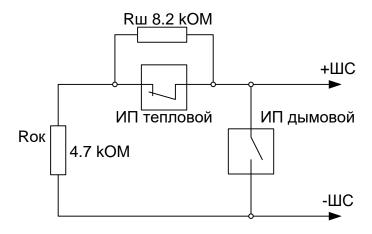


Рис.5 - Схема включения нормально-разомкнутых ("дымовых") и нормально-замкнутых тепловых пожарных извещателей (комбинированный ШС)

Примечание:

Номинал резистора Rd в схемах включения извещателей представленных на рисунках 3 и 5 зависит от конкретных моделей используемых пожарных извещателей.

Резисторы Rok 4,7кОм или Rd должны подключаться непосредственно к извещателю.

1.7. Тревожные (ТС)

- 1.7.1. Состояние тревожного шлейфа сигнализации контролируется постоянно.
- 1.7.2. При нарушении шлейфа данного типа не происходит срабатывания сирены и выносной сообщение "Охрана" не меняет своего состояния.
- 1.7.3. После нарушения шлейфа тревожной сигнализации блок каждые 4 минуты проверяет исправность шлейфа. Если сопротивление шлейфа вернется в состояние нормы, блок берет его под охрану и передает соответствующее сообщение на Сервер.

Примечание:

Шлейфы TC или ПС нельзя снять с охраны по команде с Сервера, при выполнении команды «Снять», поданной на такой шлейф, блок ответит извещением «Не снят».

1.8. Программируемые выходы

- 1.8.1. Блок имеет 2 выходных ключа типа «открытый коллектор».
- 1.8.2. Блок имеет выход для подключения светодиода, который совмещен с выходом №1. Выход №1 рекомендуется настраивать на работу в качестве выносного оповещателя «Охрана».
- 1.8.3. Режим работы ключей зависит от настроек блока и может быть выбран один из следующих вариантов
 - Не используется;
 - Выносной оповещатель «Охрана»;
 - Выносной оповещатель «Пожар»;
 - Пожарное оповещение
 - Сирена

1.9. Режимы индикации блока

- 1.9.1. На передней панели блока располагаются двухцветные индикаторы работы «РАБОТА», «ОХРАНА», «ПОЖАР», «СВЯЗЬ» и индикаторы состояния восьми шлейфов сигнализации «1» «8».
- 1.9.2. Индикатор «РАБОТА» при нормально режиме работы всегда включен зеленым, каждую секунду он кратковременно становится оранжевым. В случае серьёзных неполадок, индикатор «РАБОТА» горит красным непрерывно.
- 1.9.3. Алгоритм работы остальных индикаторов представлен в таблицах 2-6.

Таблица 2. Состояние индикатора «Охрана»

Состояние индикатора	Режим охраны	
Индикатор выключен	Имеются не взятые охранные ШС, или неисправные пожарные ШС	
Зеленый включен 0,125 секунды, выключен 0,125 секунды	Блок выполняет команду «Взять после выхода»	
Зеленый включен непрерывно	Все шлейфы взяты под охрану	
Красный включен 1 секунду, выключен 1 секунду	Тревога любого ШС (ОС, ПС, ТС)	

Таблица 3. Состояние индикатора «Пожар»

Состояние индикатора	Состояние пожарных ШС	
Индикатор выключен	Нет пожарных ШС	
Зеленый включен непрерывно	Сопротивление всех пожарных ШС в норме	
Красный включен 0,125 секунды, выключен 4 секунды	Неисправность пожарного шлейфа	
Красный включен 3 секунды, выключен 1 секунду	Пожарный шлейф находится в состоянии «ПОЖАР»	

Таблица 4. Состояние индикатора «Связь»

Состояние индикатора	Состояние связи
Зеленый включен непрерывно	Установлена связь с сервером, работа на основном канале связи.
Зеленый включен 1с, выключен 0,5 с	Установлена связь с сервером, работа на резервном канале связи.
Красный 0,125 с на фоне зелёного	Обмен данными с сервером

Красный включен 0,5 секунды,	Нет связи с сервером
выключен 0,5 секунды	

Таблица 5. Режимы работы индикаторов состояния шлейфов «1» - «8»

Режим работы индикаторов состояния шлейфов	Состояние шлейфа сигнализации		
Индикатор выключен	Не охраняется		
Зеленый включен постоянно	Шлейф взят под охрану		
Зеленый включен 0,25 секунды,	Выбран для взятия – сопротивление		
выключен 0,25 секунды	шлейфа в норме, режим выключается через 1 мин после выбора шлейфа		
Красный включен 0,25 секунды, зеленый включен 0,25 секунды	Выбран для взятия – сопротивление шлейфа не в норме, режим выключается через 1 мин после выбора шлейфа		
Зеленый включен 0,125 секунды,	На шлейфе выполняется команда		
выключен 0,125 секунды	«Взять после выхода», сопротивление шлейфа в норме		
Красный включен 0,125 секунды,	На шлейфе выполняется команда		
Зеленый включен 0,125 секунды	«Взять после выхода» или «Взять с задержкой», сопротивление шлейфа не в норме		
Красный включен 0,5 секунды, выключен 0,5 секунды	На шлейфе зафиксировано состояние «Тревога» или «Пожар»		
Красный включен 2 раза по 0,125	Срабатывание дымового датчика		
секунды, пауза 0,125 секунды, с			
периодом следования 4 секунды			
Красный включен 0,125 секунды, выключен 4 секунды	Неисправность пожарного шлейфа		
Оранжевый включен постоянно	Выбран для снятия, режим		

выключается через 1 мин после
выбора шлейфа

1.10. Режимы работы встроенного звукового оповещателя

Таблица 6. Режимы работы встроенного звукового извещателя.

Режим работы звукового оповещателя	Причина срабатывания	
Включен 3 секунды, выключен 1 секунду, не более 4 минут.	Тревога пожарного шлейфа	
Включен 0,125 секунд, выключен 4 секунды	Неисправность пожарного шлейфа	
Включен 0,125 секунды, с периодом	Нарушение на охранном шлейфе.	
в 1 секунду.	Напоминание о необходимости снять блок с охраны	
Короткий однократный сигнал	Считан ключ ТМ, нажата кнопка на встроенной клавиатуре, шлейф взят под охрану	

- 1.10.1. Внутренний звуковой оповещатель напоминает о необходимости снятия блока с момента нарушения шлейфа ОС и выключается по истечении времени заданного параметром «Включить сирену через, сек» или после прикладывания ключа ТМ к считывателю. Внутренний звуковой оповещатель включается только срабатывании ШС 1. По умолчанию входная зона должна включаться в 1 ШС.
- 1.10.2. Если ключ не был приложен, активизируется выход(ы) с режимом работы «Сирена».
- 1.10.3. Звуковой извещатель «Сирена» выключается через 4 минуты, по событию «Взять», после прикладывания любого ключа ТМ, или по нажатии клавиши «С» на клавиатуре, по вводу кода идентификации, или по команде «Снять» от сервера.
- 1.10.4. Режимы работы ключей ВИ «Охрана», ВИ «Пожар», «Пожарное извещение» и «Сирена» указаны в таблице 7.

Таблица 7. Режимы работы выносных извещателей «Охрана», «Пожар», «Пожарное извещение» и «Сирена».

Состояние	Выносной	Выносной	иПоможио о	Звуковой
блока или шлейфов сигнализации	извещатель «Охрана»	извещатель «Пожар»	«Пожарное извещение»	оповещатель «Сирена»
Тревога на пожарном шлейфе, состояние блока "Пожар"	Включен 0,5 секунды, выключен 0,5 секунды	Включен 2 сек, выключен 1 сек	Включен	Включен непрерывно, не более 4 минут
Тревога на охранном шлейфе	Включен 0,5 сек, выключен 0,5 сек	Не меняет состояния	Не меняет состояния	Включен 0,5 сек, выключен 0,5 сек, не более 4 минут
Неисправность пожарного шлейфа	Не меняет состояния	Включен 0,125 сек, выключен 4 сек	Не меняет состояния	Не меняет состояния
Норма на пожарных шлейфах	Не меняет состояния	Включен	Выключен	Не меняет состояния
На любом шлейфе выполняется команда "Взять шлейф X после выхода"	Включен 0,125 с. Выключен 0,125 с.	Не меняет состояния	Не меняет состояния	Не меняет состояния
Все охранные шлейфы в норме и взяты под охрану	Включен	Не меняет состояния	Не меняет состояния	
Имеются охранные шлейфы не принятые под охрану	Выключен	Не меняет состояния	Не меняет состояния	Не меняет состояния
Срабатывание датчика тревожной сигнализации	Не меняет состояния	Не меняет состояния	Не меняет состояния	Не меняет состояния

2. Подготовка блока к использованию

- 2.1. Порядок ввода блока в эксплуатацию следующий:
 - 2.1.1. Подготовка пультового оборудования.
 - 2.1.2. Конфигурирование параметров блока.
 - 2.1.3. Установка блока на месте эксплуатации.
- 2.2. Меры безопасности при подготовке блока Работы по монтажу, наладке и эксплуатации блока должны выполняться в соответствии с РД 78.145-93, ГОСТ Р 50776-95 и другой нормативной документацией.
- 2.3. Персонал, допущенный к выполнению работ, должен быть аттестованным на знание норм и правил монтажа, наладки, эксплуатационного обслуживания средств охранно-пожарной сигнализации, иметь квалификационную группу по электробезопасности не ниже третьей.
- 2.4. Запрещается производить установку, монтаж и техническое обслуживание блока при включенном питании.

3. Программирование параметров блока

- 3.1. Для программирования параметров блока используется ПО «Конфигуратор параметров блока» из состава программного комплекса.
- 3.2. Перед программированием необходимо USB вход блока подключить к USB выходу ПК, подать питание на блок и запустить программу конфигурирования.
- 3.3. Первоначальное окно после запуска программы показано на рис.6.

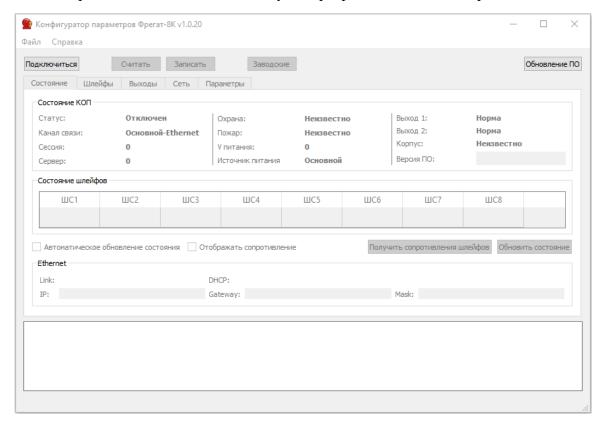
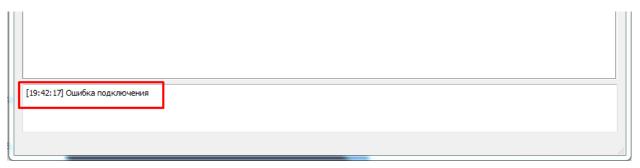



Рис. 6. Первоначальное окно после запуска программы

- 3.4. После запуска программы необходимо выполнить подключение к блоку, нажав на кнопку «Подключиться».
- 3.5. В случае ошибки подключения в поле служебных сообщений появится запись об ошибке, как показано на рис. 7.

Рис. 7. Окно служебных сообщений

- 3.6. Далее, в случае удачного подключения, необходимо нажать кнопку «Считать», произойдет считывание версии блока.
- 3.7. Возможно отображение состояния ШС при нажатии на кнопку «Получить состояние шлейфов». Обновление состояния ШС происходит по кнопке «Обновить состояние».
- 3.8. Окно программы после считывания конфигурации показано на рис. 8.

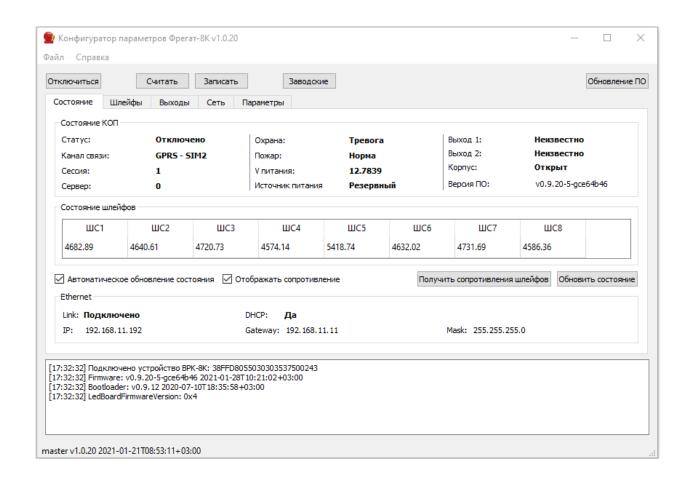


Рис. 8. Окно состояния прибора.

Программирование параметров ШС.

3.9. Программирование параметров ШС осуществляется на вкладке «Шлейфы» (см. рис. 9).

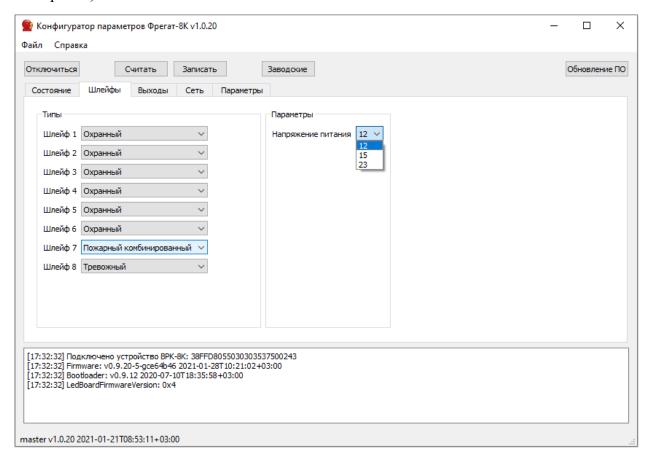


Рис. 9. Программирование параметров ШС.

- 3.10. Для каждого ШС можно установить тип ШС:
 - 3.10.1. охранный
 - 3.10.2. тревожный
 - 3.10.3. пожарный комбинированный
 - 3.10.4. пожарный дымовой
 - 3.10.5. пожарный тепловой
 - 3.10.6. патруль
 - 3.10.7. пожарный ПЦН
- 3.11. На этой вкладке имеется переключатель напряжения питания шлейфов. Напряжение питания ШС можно установить из ряда: 12, 15, 23 вольта

Программирование силовых выходов

3.12. На вкладке «Выходы» доступны параметры программируемых силовых выходов (см. рис. 10).

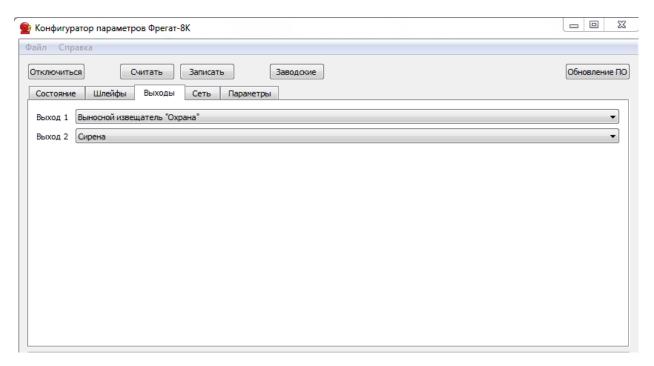


Рис. 10. Программирование силовых выходов.

- 3.13. Доступные режимы работы выходов:
 - 3.13.1. Выносной оповещатель охрана («Лампа»)
 - 3.13.2. Сирена

Настройка сети

3.14. На рис. 11 показана вкладка «Сеть».

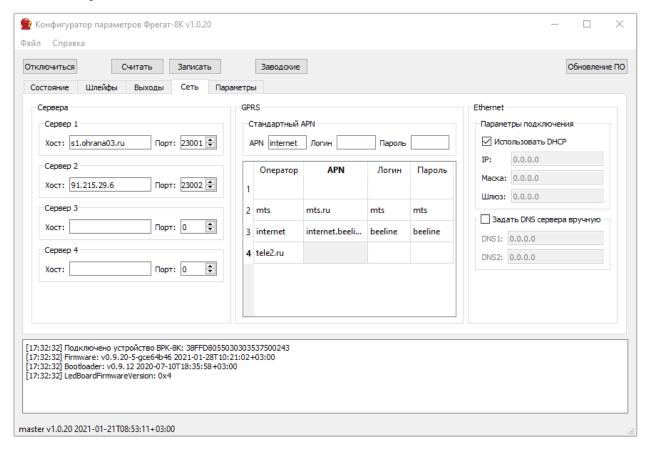


Рис. 11. Вкладка «Сеть»

- 3.15. На вкладке «Сеть» расположенные сетевые настройки блока.
- 3.16. Сетевые настройки включают в себя параметры:
 - 3.16.1. Настройки серверов подключения: параметры «Хост» и «Порт»
 - 3.16.2. Настройки GPRS: настройки APN для различных операторов сотовой связи
 - 3.16.3. Настройки Ethernet:
 - Использовать DHCP прибор получит сетевые настройки автоматически
 - IP IP адрес прибора в локальной сети
 - Маска маска сети
 - Шлюз IP адрес роутера
 - Задать DNS сервера вручную используется, если роутер не выдает адреса DNS сервера, при этом можно задать адреса двух DNS серверов.
- 3.17. Параметры канала связи Ethernet:
 - 3.17.1. Использовать DCHP при автоматической настройке сети
 - 3.17.2. ІР адрес блока в локальной сети
 - 3.17.3. Маска маска подсети
 - 3.17.4. Шлюз ІР адрес роутера

Примечание: настройки подключения по локальной сети необходимо получить у администратора сети Заказчика.

Вкладка параметры

3.18. На рис. 12. показан вид вкладки параметры

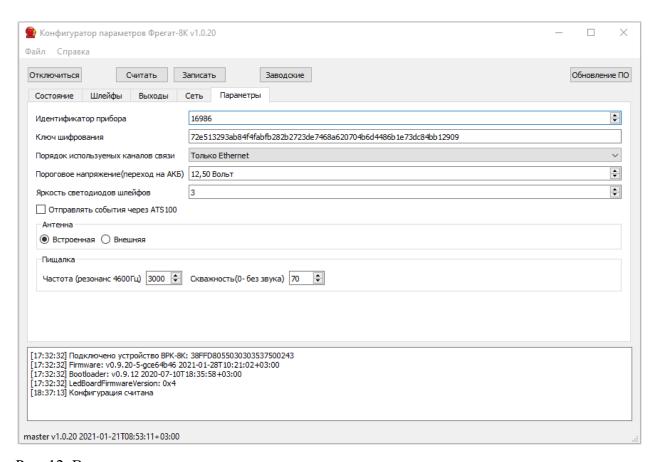


Рис. 12. Вид вкладки параметры.

- 3.19. На этой вкладке настраиваются параметры:
 - 3.19.1. Идентификатор блока уникальное число от 1 до 65535;
 - 3.19.2. Ключ шифрования строка длиной 64 знака. Строковое представление 32 байтного ключа шифрования
 - 3.19.3. Порядок используемых каналов связи. Доступны варианты:
 - только GPRS
 - только Ethernet
 - основной канал GPRS, резервный Ethernet
 - основной канал Ethernet, резервный GPRS
- 3.20. Пороговое напряжение. Значение напряжения питания, при котором блок генерирует событие «Переход на АКБ»
- 3.21. Отправлять события через ATS100 не используется в данной версии блока
- 3.22. Параметр «Антенна» указывает на вид GSM антенны.
- 3.23. Параметр «Частота» и «Скважность» задают параметры встроенного звукового оповещателя.

10. Установка на месте эксплуатации

- 10.1. Блок устанавливается внутри охраняемого помещения в месте, защищённом от доступа посторонних лиц, воздействия атмосферных осадков, капель и брызг, механических повреждений, химически активных паров и газов, разрушающих металлы и изоляцию в соответствии актом обследования (проектом).
- 10.2. Для закрепления блока на стене используются дюбели и саморезы, не входящие в комплект поставки.
- 10.3. Схемы подключения блоков приведены в приложении А.
- 10.4. Не допускается устанавливать блок в шкафах и ящиках, конструкция которых может повлиять на его работоспособность.
- 10.5. При установке и эксплуатации блока следует руководствоваться «Правилами устройства электроустановок», «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», РД 78.145-93, ГОСТ Р 50776-95 и другой нормативной документацией, а также настоящим руководством по эксплуатации на блок.
- 10.6. Перед монтажом блока необходимо провести следующие действия:
 - 10.6.1. Убедиться, что используется последняя версия ПО блока
 - 10.6.2. Согласовать с ХО на объекте и администратором базы данных АРМ ПЦН способ ввода кода идентификации.
 - 10.6.3. Зарегистрировать блок и коды идентификации в базе данных АРМ ПЦН, создав карточку объекта (данные действия выполняются персоналом АРМ ПЦН).
 - 10.6.4. В соответствии со схемой подключения приложения А подключить к блоку Ethernet кабель с разъёмом RJ45, шлейфы сигнализации, выносные световые и звуковые оповещатели.
 - 10.6.5. Установить SIM-карты (карту) в соответствии с конфигурацией в держатели
 - 10.6.6. Установка на железобетонных поверхностях может ослабить сигнал сети GSM и потребовать установки внешней GSM-антенны. Блок комплектуется внутренней GSM-антенной.
 - 10.6.7. При низком GSM сигнале рекомендуется установить внешнюю GSM антенну в разъём «Антенна GSM» на плате блока. Внешняя антенна подключается через переходник IPX-SMA (в комплект поставки не входит).
 - 10.6.8. В соответствии с приложением А подключить к блоку необходимое количество ШС.
- В Н И М А Н И Е! Выносные резисторы контроля ШС устанавливать на концах ШС.Для обеспечения бесперебойной работы по каналам GSM-сетей рекомендуется устанавливать блок в места с наилучшим уровнем GSM-сигнала. Определить значение GSM сигнала в определённом месте можно с помощью смартфона.
 - 10.7. Порядок проверки готовности блока к использованию
 - 10.8. По окончании монтажных работ необходимо выполнить проверку работоспособности блока: установить необходимую тактику работы ШС;
 - 10.9. по индикатору «Связь» убедиться в наличии связи с APM ПЦН отдельно по каждому используемому каналу связи (Ethernet, SIM1, SIM2). Для проверки необходимо переводить в аварию остальные каналы связи (извлечение кабеля Ethernet, SIM1, SIM2), оставляя работоспособным только проверяемый;

- 10.10. Убедиться, что уровни сигналов беспроводных сетей GSM в месте установки блока достаточны для устойчивой работы.
- 10.11. По индикаторам «1» «8» проверить исправность схем контроля ШС;
- 10.12. Проверить постановку под охрану и снятие с охраны ШС с помощью ввода кода идентификации ХО на блоке
- 10.13. Проверить выполнение блоком команд «Взять», «Снять», «Опросить» и т.д., подаваемых с АРМ ПЦН;
- 10.14. Проверить формирование и прохождение на APM ПЦН извещений: «Тревога X», «Пожар X», «Патруль», «Шлейф Патруль в норме», «Вскрыт корпус блока», «Закрыт корпус блока» путём срабатывания соответствующих извещателей в ШС и датчика вскрытия корпуса, где X номер нарушаемого ШС;
- 10.15. Проверить работу всех оповещателей и пользовательского оборудования, подключенных к силовым выходам блока;
- 10.16. Проверить работоспособность всех модулей, подключенных по шине расширения.

11. Эксплуатация блока

- 11.1. Постановка и снятие с охраны
 - 11.1.1. Взятие под охрану или снятие с охраны, возможно полное или частичное.
 - 11.1.2. При частичном взятии, под охрану берутся лишь выбранные ШС. При полном взятии под охрану берутся все шлейфы одновременно.
 - 11.1.3. Шлейфы сигнализации, настроенные как пожарные или тревожные, не могут выбираться для взятия или снятия, так как они контролируются постоянно.
 - 11.1.4. Блок поддерживать три режима взятия ШС под охрану:
 - 11.1.4.1. «Взять сразу»
 - 11.1.4.2. «Взять с задержкой»
 - 11.1.4.3. «Взять после выхода».
 - 11.1.5. Выбор того или иного режима, в зависимости от особенностей охраны объекта, производится путем настойки соответствующего шлейфа блока в базе данных.
 - 11.1.6. Режим взятия настраивается в БД для каждого шлейфа индивидуально.
 - 11.1.7. При режиме «Взять сразу» шлейф берётся под охрану без задержек.
 - 11.1.8. При режиме «Взять с задержкой» шлейф берётся под охрану через промежуток времени «Задержка взятия», заданный в настойках.
 - 11.1.9. При режиме «Взять после выхода» шлейф берётся под охрану после возвращения ШС в нормальное состояние (например, после открытия и закрытия двери). Если в течение четырех минут восстановления шлейфа не было, то в зависимости от состояния ШС, блок берет шлейф под охрану или генерирует событие «Тревога ШС».
 - 11.1.10. В режимах «Взять с задержкой» и «Взять после ухода» индикатор шлейфа, который берется по заданной программе и выносной оповещатель «Охрана» мигает с удвоенной частотой.

11.2. Способы идентификации.

11.3. Для идентификации пользователя блока при взятии или снятии с охраны, используются три способа:

С помощью только ключа ТМ:

Приложить ключ ТМ к считывателю

С помощью кода:

Нажать «*» затем вводится код с помощью кнопок клавиатуры «0» - «9» не более 12 цифр, затем в течение 20 секунд нажать кнопку #

Комбинированный способ:

Нажать «*», затем ввести код с помощью кнопок клавиатуры «0» - «9» (не более 12 цифр), далее в течение 20 приложить TM

11.4. При комбинированном вводе, для идентификации на сервер отправляется код ТМ и код с клавиатуры.

11.5. Полное взятие/снятие ШС под охрану.

11.6. Взятие/снятие шлейфов под охрану возможно полное и частичное. Полное взятие/снятие возможно производить непосредственным вводом идентификаторов. Для этого нужно просто пройти процедуру идентификации.

Приложить ключ ТМ

Нажать *, ввести код, нажать # Нажать *, ввести код, приложить ключ ТМ

Если все охранные ШС под охраной, то будет произведено снятие всех ШС, в противном случае все взятые ШС будут сняты с охраны

Если все охранные ШС под охраной, то будет произведено снятие всех ШС, в противном случае все взятые ШС будут сняты с охраны

Если все охранные ШС под охраной, то будет произведено снятие всех ШС, в противном случае все взятые ШС будут сняты с охраны

11.7. Полное или частичное взятие ШС с предварительным контролем состояния ШС (рекомендуемый способ).

Нажать кнопку «ВЗЯТЬ»

Нажать кнопку «ВЗЯТЬ»

Оценить состояние ШС. Индикаторы ШС, которые находятся в состоянии «Норма», будут мигать зеленым, иначе попеременно зеленым – красным.

Оценить состояние ШС. Индикаторы ШС, которые находятся в состоянии «Норма», будут мигать зеленым, иначе попеременно зеленым – красным.

Нажатием на кнопку с номером ШС, выбрать шлейфы для взятия. Индикатор, выбранного ШС горит постоянно. Включены оба цвета, красный и зеленый

Пройти идентификацию

Пройти идентификацию

Будет произведено взятие всех ШС

Будет произведено взятие выбранных ШС

11.8. Частичное снятие ШС с охраны.

Нажать кнопку «СНЯТЬ»

Нажатием на кнопку с номером ШС, выбрать шлейфы для снятия. Индикатор, выбранного ШС горит постоянно. Включены оба цвета, красный и зеленый

Пройти идентификацию

Будет произведено снятие выбранных ШС

- 11.9. Выносной оповещатель «Охрана» включается постоянно только при взятии всех охранных шлейфов.
- 11.10. Если активирован параметр «Выключить ВИ охрана через, сек», то выносной оповещатель «Охрана» должен выключится через заданное время.

12. Хранение

- 12.1. Условия хранения должны соответствовать условиям 1 ГОСТ 15150-69.
- 12.2. Блоки должны храниться упакованными.
- 12.3. Хранить блоки следует на стеллажах.
- 12.4. Расстояние от блоков до стен и пола хранилища должно быть не менее 0,1 м.
- 12.5. Расстояние между отопительными устройствами и блоками должно быть не менее 0,5 м.
- 12.6. При складировании блоков в штабели разрешается укладывать не более четырех коробок с блоками.
- 12.7. В помещении должны отсутствовать пары агрессивных веществ и токопроводящей пыли.

13. Транспортирование

- 13.1. Блоки могут транспортироваться всеми видами транспорта в крытых транспортных средствах и в герметизированных отсеках самолета.
- 13.2. При подготовке к транспортированию, в зависимости от вида транспорта, должны выполняться требования, изложенные в соответствующих нормативных документах.
- 13.3. Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150-69.
- 13.4. Блок в упаковке выдерживает при транспортировании:
 - 13.4.1. транспортную тряску с ускорением 30 м/с2 при частоте ударов от 80 до 120 в минуту или 10000 ударов с тем же ускорением;
 - 13.4.2. температуру окружающего воздуха от минус 50 до плюс 50 °C;
 - 13.4.3. относительную влажность воздуха до 95 % при температуре 35 °C.
- 13.5. Срок транспортирования и промежуточного хранения не должен превышать 3 мес.
- 13.6. Допускается увеличивать срок транспортирования и промежуточного хранения блоков при перевозках за счет сроков сохраняемости в стационарных условиях.
- 13.7. После транспортирования при отрицательных температурах или повышенной влажности воздуха блоки непосредственно перед установкой на эксплуатацию должны быть выдержаны без упаковки в течение не менее 24 ч в помещении с нормальными климатическими условиями.

Приложение А.

Схема подключения прибора «Фрегат-8К» при установке на месте эксплуатации.

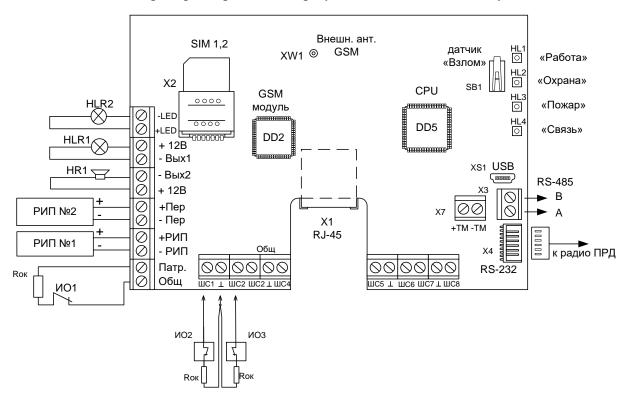


Рис. 1. Схема подключения прибора "Фрегат-8К"

Условные обозначения

HLR1 – оповещатель световой

HLR2 – выносной светодиод «Охрана»

HR1 – оповещатель звуковой

Rок – оконечный резистор ШС

ИО1 – датчик «Патруль»

ИО2, ИО3 – извещатели охранные